四则运算的意义 什么叫做四则运算


知识点一:四则运算的概念和运算顺序

1. 加法、减法、乘法和除法统称四则运算。

2. 在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3. 在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。

4. 算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。括号里面的计算顺序遵循以上1、2、3条的计算顺序。

知识点二:0的运算

1. 0不能做除数;字母表示:无,a÷0是错误的表达

2. 一个数加上0还得原数;字母表示:a+0 = a

3. 一个数减去0还得原数;字母表示:a-0 = a

4. 一个数减去它本身,差是0;字母表示:a-a =0

5. 一个数和0相乘,仍得0;字母表示:a×0 =0

6. 0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)

知识点三:运算定律

1. 加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。字母表示:

a+b=b+a

2. 加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。字母表示:

(a+b)+c=a+(b+c)

3. 乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。字母表示:

a×b=b×a

4. 乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。字母表示:

(a×b)×c=a×(b×c)

5. 乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。字母表示:

①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;

②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)

6. 连减定律:

①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:

a—b—c=a—(b+c);a—(b+c)=a—b—c;

②在三个数的加减法运算中,交换后两个数的位置,得数不变。字母表示:

a—b—c=a—c—b;a—b+c=a+c—b

7. 连除定律:

①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。字母表示:

a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;

②在三个数的乘除法运算中,交换后两个数的位置,得数不变。字母表示:

a÷b÷c=a÷c÷b;a÷b×c=a×c÷b

知识点四:简便计算例题

一、常见乘法计算:

1. 整数:25×4=100 125×8=1000

2. 小数:0.25×4=1 0.125×8=1

二、加法交换律简算例题:

50+98+50

=50+50+98

=100+98

=198

三、加法结合律简算例题:

488+40+60

=488+(40+60)

=488+100

=588

四、乘法交换律简算例题:

0.25×56×4

=0.25×4×56

=1×56

=56

五、乘法结合律简算例题:

99×0.125×8

=99×(0.125×8)

=99×1

=99

六、含有加法交换律与结合律的简算例题:

65+28.6+35+71.4

=(65+35)+(28.6+71.4)

=100+100

=200

七、含有乘法交换律与结合律的简算例题:

25×0.125×4×8

=(25×4)×(0.125×8)

=100×1

=100

八、乘法分配律简算例题:

1、分解式

25×(40+4)

=25×40+25×4

=1000+100

=1100

2、合并式

=32

十一、简化计算的其他示例:

①256—58+44

步骤:将减法运算转换为加减运算

=256+44—58

步骤:执行加法运算

=300—58

步骤:执行减法运算

=242

②250÷8×4

步骤:将除法运算转换为乘除运算

=250×4÷8

步骤:执行乘法运算

=1000÷8

步骤:执行除法运算

=125